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ABSTRACT

A new semi-analytic solution for the leakage of fluid through a circular hole in an
otherwise essentially impermeable geomembrane underlain by a clay liner is presented. This
solution covers the full range of layer thickness between very thin (one-dimensional flow) and
infinitely thick (Forchheimer's solution). It demonstrates that, in general, the flow is greater than
that predicted by the limiting cases. The solution can be used for a wide range of practical
problems where the radius of the hole may range from a pinhole to a large quasi-circular wrinkle
in a perforated geomembrane (i.e. where the "hole" is considered to be the area where there is no
contact between the geomembrane and clay). The solution assumes perfect contact between the
geomembrane away from the hole but does allow consideration of hydraulic anisotropy of the
clay layer. Using the proposed theory, a very simple, analytic, approximate expression is
obtained. This solution can be used in hand calculations to establish the leakage rate in many

practical design situations.
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INTRODUCTION

Composite liner systems involving a geomembrane (e.g. high density polyethylene) over
a clay liner (e.g. compacted clay, CCL, or a geosynthetic clay liner, GCL) play an important role
in the design of modern waste and other fluid impoundment facilities. The intact geomembrane
provides an essentially impermeable barrier to water. Thus, leakage of water through the

composite liner will be controlled by the number and size of holes in the geomembrane. These



holes can often be approximated as circular and a number of limiting solutions have been
obtained for a circular hole overlying a clay layer. For example, if one assumes that there is
perfect contact between the geomembrane outside the hole then the flow Q through a hole on a
semi-infinite isotropic soil deposit is given by Forchheimer's (1930) Equation

Q=4rhk ' (1)
where 1, is the radius of the hole, k is the hydraulic conductivity of the clay liner, and hy is the
head loss and is generally taken to be the height of fluid above the hole.

An alternative approach, adopted by Jayawickrama et al. (1988), was to consider a
transmissive zone between the geomembrane and the clay. They developed a solution that
considered axi-symmetric horizontal radial flow at the interface and 1-D vertical flow through
the clay between the transmissive layer below the geomembrane and a transmissive layer below
the clay layer. They assumed that the head in the underlying transmissive layer was at the level
of the geomembrane (i.e. h, = D in Figure 1). This solution has been widely used (e.g. Giroud &
Bonaparte 1989; Giroud et al. 1994, 1998) in practice. However, as useful as they are, both
solutions have limitations. Equation 1 is limited to very deep layers; a situation generally not
encountered. The solution develéped by Jayawickrama et al. (1988) considers the case of a layer
of finite depth but breaks down where the transmissivity of the interface between the
geomembrane and liner is very low (e.g. when there is good contact as considered numerically
by Walton and Sager (1990) and Walton et al. (1997)).

The objective of this paper is to provide a relatively simple solution methodology for a
number of additional cases that may be of practical significance. In particular, attention is
focussed on the case of a geomembrane in good contact with the soil for r > r, (i.e. no

transmissive layer between the geomembrane and the soil) and a layer of finite depth. No



restriction is placed on the size of the hole that may be either small or large relative to the
thickness of the clay layer. This has important potential applications for holes in a geomembrane
over a GCL liner (that may be only 5-10 mm thick) as shown schematically in Figure 1a or when
simulating an approximately circular perforated wrinkle above a compacted clay liner as shown

schematically in Figure 1b.

THEORY - GENERAL CASE
Considering the general case shown in Figure 1, we seek a solution to the mixed
boundary value problem associated with the specified head at the hole
h=h;=(D-h,)+h, 0<r<r, atthe surface (z=D-h,) (2)
and specified zero vertical flux where there is intact geomembrane

v, =k, j—h =0 r>r, at the surface (z=D-h,) (3)
z

and k, is the vertical hydraulic conductivity. Suppose that the velocity is not known but that the
total head, ho(x,y) is known in some region R, and assume that the velocity v,(x,y) (at z=D-h,) on
R can be approximated by an expression of the form

Vo (6 ¥) =, (X, ) +..0,4, (X, y) (4)
where we will seek basis functions ¢; and coefficients c; that will provide the best approximation
to the actual velocity distribution.

A solution can be achieved in transform space and so introducing the Fourier transforms

gives

0 o

h(x,y,z) = J‘ Jei(“x+BY)H(a, B,z)dadp (5a)
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H(o,B,2)=— | [e ™™ nh(x, y,z)dxdy (5b)
v(X,y,2) = f J‘ei(““‘*y)vm,ﬁ,z)dadﬁ (62)
V(aB,2)=— [ [e "™ y(x,y,z)dxdy | (6b)
where
V(a,p2) =k, ZU&R7)

0z

For a horizontally layered deposit it is easy to establish (see Appendix A) that

H(a,B,2) = L(e,B,2)V, (., B) (7
where
V, =— J' J-e‘i(“”‘}” v, (x,y) dxdy
4n” o
. ®)
= v ) dndy

(where v,=0 outside R). For steady state conditions and a layer of thickness D underlain by a

permeable base it can be shown (Appendix A) that:

sinh’:p(ha +Z)\/I§:J
L(a,B,z) = -

3 ®
pvk,k, cosh,:pD ’I{i:’
and for z = D-h, (i.e. at the top of the layer)
tanhl:pD ft—“}
L, (a,B) = - (10a)

p khkv



and for D — oo,

1
L (a,p)=——x= (10b)
P v khkv
where p=q/a’ +p>.
It follows from Eqs. 4 and 8 that
V,(@,B) =D ¢;® (a,B) (11)
j=0
where
l —i{ax+
D, = poe I.[e (P dxdy (12)
R
Now from Eqs. 5a, 7 and 11,
h(x,y,2)= | [L(e.B,2)V, (e, B)e ™ dodp
(13)
=>c; | LA, B,2)® (00, B)e" ™ dardp
3=0 -~ —0
and at z=D-h, (top of the layer)
h,(6,y)= 2 ¢; [ [L,(0B)®;(a,Be ™ dadp (14)
j=0 —00 ~00
and hence
[ [ned oyydxdy=D"c; [ fIL, (e, (aB) [ [e'™¢, (x, y)dxdyldadp
R J=0 -0 -0 R
(15)

n

=4n’ ¢, wj c]d);Lo(oc,B)CDjdoch

j=0 —~00 —00

where @) is the complex conjugate of @,



Hence, Z Ayc; =D, (16)

for a given set of basis functions ¢;; this can be solved for the coefficients c; that provide the best

approximation to the velocity distribution where

A, =4n’ wj ?@}Lo(a,ﬁ)cpjdadﬁ , (17)
b, = f J'ho(x,y)rbg(x,y)dxdy (18)

SOLUTION FOR A CIRCULAR HOLE ON A HALF-SPACE
To illustrate the approach for a problem with a known solution, consider the special case
of a circular hole on a half-space and suppose

e t)

T,

(o}

and hence from Eq. 4

2
v, =c [1-—]7" O<r<r, (202)

o

=0 r>r, : (20b)

then (after integration) it follows from Eq. 12

D, =Lr—°sin pr, (21)
2n p

and hence from Eqgs. 10b and 14,
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+1(ax+[}y) r sinpr

h, (%, y)—_J‘_J‘ \/_IE_E‘ 2mp dadp
sin pr
To(pr) =~dp
1/k k 'l.
L O<r<r, (22a)
khkv 2
= Sobo sin"(r—"j r, <r<ow (22b)
khkv T

Hence, since hy(x,y) = hq is a constant for 0<r<r,, from Eq. 22a

_2hyqfk,k

h™v

Tx

o}

and the flow Q is given by

o 2
Q=2nc, jr(l ——i—z)‘o's dr =2mnr’c,

(23)
=4r, hy . Jk, k

h™v

that reduces to Forchheimer's (1930) solution for an isotropic soil with k=ky=k, (see Eq. 1).

Thus in this case only one term is required in Eq. 4 to obtain the exact solution.

SOLUTION FOR A CIRCULAR HOLE ON A LAYER OF FINITE DEPTH
The functions ¢o, ¢1,¢; etc. in Eq. 4 provide the basis for mixed boundary value problems

through the functions @, ®y,...,P; given by Eq. 12. Consider basis functions of the form

o, =<1~§—2>*”2 (24a)



o, = (r} —r*)*" u=12,... (24b)
In general, one could use as many basis functions as one wishes, and the coefficients ¢; will
eliminate those not needed. However, it was found that for all cases examilned, three basis
functions ¢,, ¢; and ¢, were sufficient.

Thus, it follows from Eq. 12 that for these axi-symmetric conditions,

o, = Lo SOCPL) (252)
2 p
2! BT
O, :Z—*E_Jll(pro) u=12.. (25b)
TP

where ['() = (u-1)! and T'(1) = 1 and hence the coefficients A,; (¢ = 0,1,2; j = 0,1,2) can be
calculated numerically from Eq. 17.

The values of b, are given by Eq. 18.

b, =2nr’h, (26a)
'.Zuh

b, = ot L=12,.. (26b)
i

for a constant head hy(x,y) = hg = D-h,+hy,. Once the coefficients A,j and b, are evaluated, Eq. 16

can be solved for the constant ¢; that match the head distribution at the hole and hence the

velocity distribution can be deduced from Eq. 11. Finally, the flow can be evaluated.

Q= [ [v,(x, y)dxdy (27)
R
and from Egs. 4

Q=Ifzn:cj¢jdxdyzzn:cj J'J-(i)jdxdy (28)

R J=0 j=0

Hence, from Egs. 18 and 28



0= i (29)

for constant head hyq = hy + D-h, over R, where b; is known from Eq. 26 and ¢; are known by

solving Eq. 16.

NUMERICAL CONSIDERATIONS

The solution presented above is essentially analytic, however, the number of basis
functions required to converge to the exact solution is not known a priori and so the number of
terms, n, may be varied. However, as noted earlier, it was found that in all situations examined,

only three terms were required. For deep deposits (r,/D — 0), one term was sufficient.
The evaluation of the coefficients A4 in Eq. 17 involves numerical integration. In

general, this is a two-dimensional integration, however, for the case of circular symmetry

considered in this paper, Eq. 17 reduces to

A, =8r’ ;[(D (P)L, (P)P;(p)pdp (30a)

where @,, @; are given by Eq. 25 and L(p) is given by Eq. 10. Note also that the infinitely deep

case (r,/D—0) arises naturally from Eq. 10a that reduces to Eq. 10b in a numerically stable
manner. The integration required in Eq. 30 can be readily performed by Gauss Quadrature and is

approximated by

A, =87 [@, (p)L,(P)D,(p)pdp (30b)

0

where the width W can be increased until A,; converges to a unique value.



Due to the fact that there is no discretization error (i.e. unlike finite element or finite
difference solutions), this approach readily allows considering a wide range of combinations of

layer thickness D and hole size r,.

LIMITING CASES

As previously noted, for the limiting case of a deep layer (r,/D—0) is given by Eq. 23

Q=dr K, @

and for a very shallow layer (r,/D—>0) the solution becomes one-dimensional and
Q=7rkvr02hd/D=n%rohdkv 31)

Between these two limits the flow increases and it may be hypothesized that the solution for

intermediate values of r,/D may be given by

Fr,

Q:(4+ D

jrohdkV (32)

where one seeks a function F that will provide a reasonable approximation for all values of
0<r/D<co.
Examination of limiting cases and Eq. 32 would suggest that flows through a "hole"

could be presented in terms of a dimensionless flow M:

Q _Mofast (33)
Chk, D

and it will be shown in the following section that to sufficient accuracy (better than 3%), F can
be given by

F =2.455+0.685 tanh[0.6 /n (r, / D)] (34)



and hence F—>1.77 as r/D—0

and Fon as ry/D—>o0.

APPLICATION TO COMPOSITE LINER INVOLVING A GCL

Geosynthetic clay liners (GCLs) with powdered bentonite in the uppergeotextile have
been developed. Thus, provided that the geomembrane liner is in intimate contact with the GCL,
there will be negligible horizontal flow at the interface between the geomembrane and GCL.
Under these circumstances, the transmissivity, 6, of the interface between the geomembrane and
GCL away from the hole is very low (6=0) and the solution presented in the previous section
may be used for two important practical cases. The first involves a "hole" in the geomembrane
that is a physical perforation (e.g. a puncture) and the geomembrane is in intimate contact with
the GCL at all points near the puncture (hole). The second involves a wrinkle with a perforation
where the size of the "wrinkle" (i.e. zone of geomembrane that is not in intimate contact with the
GCL) defines the size of the "hole". Holes and wrinkles that are approximately two-dimensional
(e.g. waves) may be modelled as described by Rowe (1998). This present paper focuses on holes
and wrinkles that are either circular or have dimensions such that they can be reasonably
approximately as circular. In the case where there is a perforation in a wrinkle, the flow will be
controlled by the minimum of either (a) the capacity for flow through the perforation (which is
controlled by Bernoulli's equation; see Giroud & Bonaparte 1989a); or (b) the flow through the
GCL in a zone where there is no intimate contact between geomembrane and GCL. Condition
(a) can be readily checked on a hand calculator as described by Giroud and Bonaparte (1989a) or
Rowe (1998) and is not considered further here. Condition (b) may be checked using the theory

presented in this paper.
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Analyses were initially performed for a GCL with a hydrated thickness of D=0.01 m,
k~2x10"% m/s, h,, = 0.3 m and hg = D+h,. These represent typical conditions of a composite
liner consisting of a geomembrane over a GCL over a secondary leachate collection (leak
detection) system at relatively low applied vertical stress (=30 kPa) and allowing for the effect of
clay-leachate interaction in assessing the k value (see Rowe 1998).

Results were obtained for a range of hole sizes, r,, and the results were plotted in terms of
the dimensionless flow, M, per hole versus r,/D and the results are plotted in Figure 2. It can be
seen that the deep solution (Forchheimer 1930) is only really valid (to better than 1%) for very
small holes, 1,/D<0.02 or r,<0.0002 m in this specific case, and that to better than about 5%
accuracy is only valid for r,/D<0.1 (r,<1 mm). This corresponds to a "small hole" (i.e.
perforation in the geomembrane). A large hole (as defined by Giroud and Bonaparte 1989a,b)
corresponds to r,/D=0.56 (r,=5.64 mm) and in this case the flow exceeds that predicted by
Forchheimer's Equation (Eq. 23) by 30%. Thus, for most practical cases involving perforations
and wrinkles, Forchheimer's (1930) equation is not adequate. It is also evident that the solution
only approaches the one-dimensional case (Eq. 31) when r,/D>20 (r,>0.2 m in this case). This
would be relevant to a large wrinkle or puncture. Thus there is a need for an intermediate
solution for a wide range of practical cases.

From the results presented in Figure 2 and Eq. 33, the factor F can also be deduced and is

plotted against /n r,/D as shown in Figure 3. It can be seen that there is a transition from F=1.77

for small values of 1,/D to F=n for large values of ro/D. In order to find a simple approximate
equation that could be used with a hand calculator, we seek a simple analytical approximation to
the variation in F with ro,/D. The nature of the variation suggests a simple function of the form

F=2.455+0.685tanh[w /n(r, / D)] (35)

13



where w is a fitting parameter selected to minimize the root mean squared eror of the fit to the
results (shown as data points in Figure 3) obtained using the theory presented in the previous
section. This was achieved for w=0.6 giving the functional form shown by the solid line in Fig.
3 and given by Eq. 34. As can be seen, this provides an excellent fit with a maximum deviation
of less than 3% and typically less than 0.5%.

Equation 34 has considerable potential for use in practical engineering calculations,
however, it is necessary to establish how well it works for situations other than the specific case
for which it was established. Firstly, consider a similar liner system but at a higher applied stress
(= 100 kPa) that results in a decreased thickness, D = 0.007 m, but also a lower hydraulic
conductivity, k = 6x10™"" m/s based on Rowe (1998). All other parameters are the same as
previously assumed. The results, presented in terms of the factor F, are also shown in Fig. 3 and

it can be seen that they are the same as for the previous case.

APPLICATION TO A COMPOSITE LINER INVOLVING A CCL

The theory presented in this paper is applicable to a full range of layer thicknesses D and
head losses hq. To illustrate its abplication to a composite liner system involving a geomembrane
over compacted clay, consider a geomembrane over a D=0.75 m thick compacted clay liner
(CCL) with k=107 m/s as specified for both the primary liner in single liner systems and for both
the primary and secondary liner in double liner systems by MoE (1998). It is again assumed that
hy=0.3 m (a typical design value) and hg=D+h,,. This latter condition may be met where there is
an active secondary leachate collection system (leak detection system) below a primary liner. It
may also be met for either a single composite liner system or the secondary liner in a double

composite liner system when the potentiometric surface is at the bottom of the compacted clay

14



liner. It was found that for a given value of r,/D, the dimensionless flow M was identical to that
obtained for the GCL systems described in the previous section (see Fig. 2). Likewise, the fit to
the approximate curve for F (Eq. 34) was the same (Figure 3), illustrating the applicability of this
simple solution (to within 3%, which is adequate for most engineering applications). Of course,
the theory and method of analysis presented in this paper can be used when more accurate results

are required.

EFECT OF ANISOTROPY

Based on Egs. 23 and 31, it can be inferred that for r,/D—0 any anisotropy in the clay

liner will increase flow in proportion to k—h but that for r,/D—0 the effect would be negligible

v

(ky controls). The proposed theory allows one to analyze the effect of any potential anisotropy.

h

—, a series of analyses was

v

To illustrate the interaction between r,/D and the effect of

initially performed for ky/k,=10. Figure 4 shows a plot of the ratio of the dimensionless flow

calculated for the anisotropic case (M,) divided by that for the isotropic case (M). As expected,

the ratio approaches /10 =3.16 for small r,/D and unity for large r,/D. Based on these results,
k, . . :
and results for other values of Pk it was found that the ratio My/M could be approximated by

the function

M k
M“ =1+f k—“ (36a)
where

15



f= 0.5[1 - -E—V-J[l —tanh <y +8/n(r, / D) >] (36b)

h

and the parameters y and § are fitting parameters obtained to minimize the root mean square
error to the approximation to the actual calculated value of M,/M obtained using the theory
presented in this paper. It was found that over the practical range 1 < ky/k, < 100, an excellent fit

was obtained for

§=0.6 (36¢)

y=-0.167-0.0073 /% (36d)

To illustrate the fit, Figure 4 shows the calculated values of M,/M using Eq. 36 as a solid line
and the actual values calculated using the rigorous theory as data points. It can be seen that Eq.

36 provides an excellent approximation and would be sufficient for all practical purposes.

. fk .
Equation 36 was only checked over the range 1 < ;"— <100 but may be valid beyond the range.

Checking would be required to confirm this.

CONCLUSION

A new semi-analytic solution to the problem of leakage through a hole in a geomembrane
and the underlying clay has been presented. This solution covers the full range of layer thickness
between a very thin and very thick layer (relative to hole size). The solution also allows
consideration of anisotropy in the clay.

By using the proposed theory, it has been shown that the leakage, Q, through a circular
hole of diameter 1, and an underlying isotropic clay layer with thickness D and hydraulic

conductivity k, can be approximated by a simple equation

16



Q _Mowsple
chk, MO (33)

0 v

where

F = 2.455 + 0.685 tanh < 0.6(¢nr, /D) > . (35)

and hg 1s the head loss across the system.
For anisotropic soils with horizontal hydraulic conductivity ky, it was found that the
dimensionless flow, M,, through the hole and soil could be related to the dimensionless flow, M,

through an isotropic soil with k=k, by the simple expression:

1\16[“ =1+f /t—‘ (36a)

where

k
f= 0.5{1 ~ = ][1 —tanh <y + 0.64n(r, / D) >] (36b)

h

and

k
y=—0.167 — 0.0073 /k—' (36d)

While Egs. 33, 35 and 36 were obtained by curve fitting to the results of the more
rigorous analysis, they have the advantage that they can be readily implemented in hand

calculations as part of the design processes of composite landfill liners.
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APPENDIX

The general solution for transient conditions must satisfy

2 2 2
kh(a_tha hj+kvah oh

and taking the Laplace and Fourier Transforms, this reduces to

sm, +p’k,

and p’=o’+p’

Equation A1 has a solution
H = Acoshp(h, +z)+ Bsinh p.('ha +z)

and considering a layer of depth D with H=0@ z =—h, gives

V, si - -
sinhu(h, +2z) _V.L
k pcoshpuD

H=
and at the top of the layer, z = D-h,,

- - sinh uD

Ho, =V, =
k pcoshpuD k. p

<
I
or‘i
O<|

that, for steady-state conditions, reduces to
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(A1)

(A2)

(A3)

(Ad)

(A5)
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k
tanh| pD_[—2

v

L =

’ p\/khkv .

and for a very deep layer this reduces to

1
pvk, k

L =

o

v

(A6)

(A7)
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